L'évaluation des risques sanitaires face au challenge des relations

dose-réponse non monotones

Christophe ROUSSELLE Direction de l'Evaluation des Risques Unité d'Evaluation des Substances Chimiques

Amiens, 5 octobre 2017,

NMDR: Non Monotonic Dose Response Relationship

Definition of NMDR:

"Non-Monotonic Dose Response is defined as a function of dose in which the slope of the dose-response curve changes sign" (adapted from Vandenberg *et al.*, 2013).

Review of non-monotonic doseresponses of substances for human risk assessment GP/EFSA/SCER/2014/01

Corporate authors

Beausoleil C. ^b, Beronius A. ^c, Bodin L^b., Bokkers, B.G.H. ^d, Boon P.E. ^d, Burger M. ^a, Cao Y. ^c, De Wit L. ^d, Fischer A. ^a, Hanberg A. ^c, Leander K. ^c, Litens-Karlsson S. ^c, Rousselle C. ^b, Slob W. ^d, <u>Varret C</u>. ^b, Wolterink G. ^d, Zilliacus J. ^c

ED Workshop

22 May 2017

DTU Food/Copenhagen

Clémence VARRET &

NMDR Consortium Partners

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Methodology

- Systematic review methodology
- Inclusion criteria
- Assessment based on relevance & reliability
- **Dose-response analysis:** Follow a dose-response analysis that compares non-monotone model with monotone model

Task 3: assessment based on relevance &reliability (full text) (1/2)

Task 3.1

Task 3: assessment based on relevance & reliability (full text) (2/2)

Task

3.2

Task 4

Development of a set of checkpoints

- Checkpoint 1: Is there a dose-response?
- Checkpoint 2: Do one or both non-monotonic models fit the data better than a monotonic model?
- Checkpoint 3: Can the apparent NMDR be explained by one single potential outlying dose group?
- Checkpoint 4: Are the effect sizes in both directions of the NMDR greater than 5%?
- Checkpoint 5: Is the steepness of the dose-response curve outside the range of biologically plausible/realistic dose-response shapes?
- Checkpoint 6: Does the apparent NMDR consist of more (or less) than two directions ?

Checkpoint 1: Is there a dose-response?

Inspection of the plot with confidence intervals gives a similar answer as testing against the null model

Yes? CP fulfilled!

Checkpoint 3: could the apparent NMDR be due to more than a single outlier? Yes? CP fulfilled!

Examples where CP 3 is not fulfilled

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Results, discussion, recommendations

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Results *in vivo* (1) Number of checkpoints (CPs) fulfilled

	DR analysis done	6	5	4	3	2	1	0
No of datasets	179	11	36	30	29	19	43	11
(%)	(100)	(6)	(20)	(17)	(16)	(11)	(24)	(6)
No of studies	42	5	16	21	20	13	14	9

- 11 out of the 179 in vivo datasets fulfilled all 6 checkpoints
- 5 substances: quercetin, resveratrol, alpha-benzene hexachloride, DEHP and methyl-mercury
- Outcomes mainly at molecular/cellular level, one pathological gastric ulcer index

Results in vivo (2): CPs fulfilled

	DR analysis done	CP1	CP2	СРЗ	CP4	CP5	CP6
No of datasets	179	145	88	33	132	65	71
(%)	(100)	(81)	(49)	(18)	(74)	(36)	(40)
No of studies	42	41	32	17	40	27	24

 In 82% of the datasets the apparent NMDR might have been caused by a single outlying dose group

Checkpoint 1: is there a DR?
Checkpoint 2: NM fits better than M?
Checkpoint 3: potential NM explained by one single potential outlying dose group?
Checkpoint 4: Are the effect sizes in both directions of the NMDR greater than 5%?
Checkpoint 5: Is the steepness outside the range of biologically plausible/realistic dose-response shapes?
Checkpoint 6: Does the apparent NMDR consist of more (or less) than two directions ?

Results in vivo: 6 CPs fulfilled (3)

Study	Test substance	Outcome/effect measured	Possible hormon- related mechanism of action	Number of dose levels tested
Bai 2010	Quercetin	Plasma concentration of PGE2	Not known	5
Dey 2009	Resveratrol	Stomach ulcer index (damage score) after 3 day of ulceration	Not known	6
Dey 2009	Resveratrol	Myeloperoxidase (MPO) activity (2 day)	Not known	6
Dey 2009	Resveratrol	Myeloperoxidase (MPO) activity (7 day)	Not known	6
Dey 2009	Resveratrol	Myeloperoxidase (MPO) activity (10 day)	Not known	6
Andrade 2006*	DEHP	Hypothalamic/preoptic area aromatase activity (male rats at PND 1)	Estrogen, androgen	10
Puatanachokchai 2006	Alpha-benzene hexachloride	Proliferating cell nuclear antigen (PCNA) in GST-P positive foci in liver	Not known	6
Puatanachokchai 2006	Alpha-benzene hexachloride	NADPH-P450 reductase activity in liver	Not known	6
Puatanachokchai 2006	Alpha-benzene hexachloride	8-hydroxydeoxyguanosine (8-OHdG) formation in liver	Not known	6
Puatanachokchai 2006	Alpha-benzene hexachloride	2α-testosterone hydroxylase activity in liver	Estrogen, androgen	6
Zhang 2013	MeHg	GRP78 protein expression in the cerebral cortex	Not known	5

*Developmental/prenatal exposure

5 checkpoints fulfilled

(36 datasets from 16 studies)

Outcome/effect

16 α -testosterone hydroxylase activity in liver Brain AChE activity Change in body weight CYP450 content in liver Freezing behavior of mice exposed to conditioned fear stress Frequency of play fighting Frequency of social investigation GST-P positive foci in liver Lipid peroxidation in the cerebrum Locomotor activity mRNA expression of IL-1 receptor type 1 mRNA expression of TNF-alpha receptor type 1 Myeloperoxidase (MPO) activity in stomach ulcer Plasma PGE2 Pulse pressure Seizure Total horizontal activity Total serum T3 Total travelled distance Ulcer index

Conclusion

- At least 5 doses + 1 control needed
- We propose a set of 6 checkpoints as tool for evaluating the evidence of NMDR
 - taking into account that data always contain both random and non-random sampling errors
- For most datasets the empirical evidence for NMDR was limited (6 CPs fulfilled)
- If 6 CPs fulfilled: not a straight conclusion, but requires an independant study to reproduce the results

for Public Health Ministry of Health, Welfare and Sport

How to use these data for Risk Assessment?

- Uncertainty can be divided in 2 groups:
 - Uncertainty that could be reduced if more data become available :
 - LOAEL versus NOAEL
 - All windows of exposure not covered
 - UF that have low plausibility to be reduced even with more data
 - Limited endpoints assessed (that may occur at lower dose)
 - Late effects
 - Possibility of NMDR

Apply specific

Apply a global ED UF: which value ?

How to use these data for Risk Assessment

- If NMDR claimed by the authors: apply checkpoints to check
- If NMDR confirmed in one study: compare with other on the same compounds/endpoints
- If NMDR plausible then:
 - Consider only the monotonic part of the curve in the range of dose corresponding to the exposure situation
- Or
 - Take the lowest "NOAEL" (and apply an uncertainty factor!)

for Public Health Ministry of Health, Welfare and Sport

https://www.efsa.europa.eu/en/press/news/160503

Update on non-monotonic dose

July 2014 to December 2015

A new EFSA external scientific report is "a useful contribution to the scientific debate" on non-monotonic dose response (NMDR) results from toxicity studies, according to Prof Anthony Hardy, Chair of EFSA's Scientific Committee. "More analysis and discussion are needed to prepare for a comprehensive assessment of the evidence for non-monotonicity," he stated.

Merci pour votre attention! Questions?

Christophe.rousselle@anses.fr

